The Global Positioning System (GPS) is a global navigation satellite system (GNSS) developed by the United States Department of Defense and managed by the United States Air Force 50th Space Wing. It is the only fully functional GNSS in the world, can be used freely by anyone, anywhere, and is often used by civilians for navigation purposes. It uses a constellation of between 24 and 32 medium Earth orbit satellites that transmit precise radiowave signals, which allow GPS receivers to determine their current location, the time, and their velocity. Its official name is NAVSTAR GPS. Although NAVSTAR is not an acronym, a few backronyms have been created for it.
Since it became fully operational on April 27, 1995, GPS has become a widely used aid to navigation worldwide, and a useful tool for map-making, land surveying, commerce, scientific uses, tracking and surveillance, and hobbies such as geocaching. Also, the precise time reference is used in many applications including the scientific study of earthquakes and as a required time synchronization method for cellular network protocols such as the IS-95 standard for CDMA.
A GPS receiver calculates its position by precisely timing the signals sent by the GPS satellites high above the Earth. Each satellite continually transmits messages containing the time the message was sent, precise orbital information (the ephemeris), and the general system health and rough orbits of all GPS satellites (the almanac). The receiver measures the transit time of each message and computes the distance to each satellite. Geometric trilateration is used to combine these distances with the location of the satellites to determine the receiver's location. The position is displayed, perhaps with a moving map display or latitude and longitude; elevation information may be included. Many GPS units also show derived information such as direction and speed, calculated from position changes.
It might seem three satellites are enough to solve for position, since space has three dimensions. However, even a very small clock error multiplied by the very large speed of light—the speed at which satellite signals propagate—results in a large positional error. Therefore receivers use four or more satellites to solve for x, y, z, and t, which is used to correct the receiver's clock. While most GPS applications use the computed location only and effectively hide the very accurately computed time, it is used in a few specialized GPS applications such as time transfer, traffic signal timing, and synchronization of cell phone base stations.
Although four satellites are required for normal operation, fewer apply in special cases. If one variable is already known (for example, a ship or plane may have known elevation), a receiver can determine its position using only three satellites. Some GPS receivers may use additional clues or assumptions (such as reusing the last known altitude, dead reckoning, inertial navigation, or including information from the vehicle computer) to give a degraded position when fewer than four satellites are visible.
No comments:
Post a Comment