In the early days of the use of genetic fingerprinting as criminal evidence, juries were often swayed by spurious statistical arguments by defense lawyers along these lines: given a match that had a 1 in 5 million probability of occurring by chance, the lawyer would argue that this meant that in a country of say 60 million people there were 12 people who would also match the profile. This was then translated to a 1 in 12 chance of the suspect being the guilty one. This argument is not sound unless the suspect was drawn at random from the population of the country. In fact, a jury should consider how likely it is that an individual matching the genetic profile would also have been a suspect in the case for other reasons. Another spurious statistical argument is based on the false assumption that a 1 in 5 million probability of a match automatically translates into a 1 in 5 million probability of innocence and is known as the prosecutor's fallacy.
When using RFLP, the theoretical risk of a coincidental match is 1 in 100 billion (100,000,000,000), although the practical risk is actually 1 in 1000 because monozygotic twins are 0.2% of the human population. Moreover, the rate of laboratory error is almost certainly higher than this, and often actual laboratory procedures do not reflect the theory under which the coincidence probabilities were computed. For example, the coincidence probabilities may be calculated based on the probabilities that markers in two samples have bands in precisely the same location, but a laboratory worker may conclude that similar—but not precisely identical—band patterns result from identical genetic samples with some imperfection in the agarose gel. However, in this case, the laboratory worker increases the coincidence risk by expanding the criteria for declaring a match. Recent studies have quoted relatively high error rates which may be cause for concern. In the early days of genetic fingerprinting, the necessary population data to accurately compute a match probability was sometimes unavailable. Between 1992 and 1996, arbitrary low ceilings were controversially put on match probabilities used in RFLP analysis rather than the higher theoretically computed ones. Today, RFLP has become widely disused due to the advent of more discriminating, sensitive and easier technologies.
STRs do not suffer from such subjectivity and provide similar power of discrimination (1 in 10^13 for unrelated individuals if using a full SGM+ profile) It should be noted that figures of this magnitude are not considered to be statistically supportable by scientists in the UK, for unrelated individuals with full matching DNA profiles a match probability of 1 in a billion (one thousand million) is considered statistically supportable (Since 1998 the DNA profiling system supported by The National DNA Database in the UK is the SGM+ DNA profiling system which includes 10 STR regions and a sex indicating test. However, with any DNA technique, the cautious juror should not convict on genetic fingerprint evidence alone if other factors raise doubt. Contamination with other evidence (secondary transfer) is a key source of incorrect DNA profiles and raising doubts as to whether a sample has been adulterated is a favorite defense technique. More rarely, Chimerism is one such instance where the lack of a genetic match may unfairly exclude a suspect.
No comments:
Post a Comment